skip to main content


Search for: All records

Creators/Authors contains: "Ghaffari, Mohsen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We prove the existence of an oblivious routing scheme that is poly(logn)-competitive in terms of (congestion + dilation), thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize (congestion + dilation), defined as follows: The dilation is the maximum path hop-length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have (congestion + dilation) within a poly(logn) factor of the best possible value. More precisely, for any integer hop-bound h, this oblivious routing scheme selects paths of length at most h · poly(logn) and is poly(logn)-competitive in terms of congestion in comparison to the best possible congestion achievable via paths of length at most h hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of R'acke [FOCS 2002, STOC 2008], which are O(logn)-competitive in terms of congestion, but are not competitive in terms of dilation. 
    more » « less
  2. null (Ed.)
  3. In a recent breakthrough, Paz and Schwartzman (SODA'17) presented a single-pass (2+epsilon)-approximation algorithm for the maximum weight matching problem in the semi-streaming model. Their algorithm uses O(n log^2 n) bits of space, for any constant epsilon>0. We present a simplified and more intuitive primal-dual analysis, for essentially the same algorithm, which also improves the space complexity to the optimal bound of O(n log n) bits - this is optimal as the output matching requires Omega(n log n) bits. 
    more » « less
  4. We present O(log logn)-round algorithms in the Massively Parallel Computation (MPC) model, with ˜O(n) memory per machine, that compute a maximal independent set, a 1 + ε approximation of maximum matching, and a 2 + ε approximation of minimum vertex cover, for any n-vertex graph and any constant ε > 0. These improve the state of the art as follows: • Our MIS algorithm leads to a simple O(log log Δ)-round MIS algorithm in the CONGESTED-CLIQUE model of distributed computing, which improves on the ˜O (plog Δ)-round algorithm of Ghaffari [PODC’17]. • OurO(log logn)-round (1+ε)-approximate maximum matching algorithm simplifies or improves on the following prior work: O(log2 logn)-round (1 + ε)-approximation algorithm of Czumaj et al. [STOC’18] and O(log logn)-round (1 + ε)- approximation algorithm of Assadi et al. [arXiv’17]. • Our O(log logn)-round (2+ε)-approximate minimum vertex cover algorithm improves on an O(log logn)-round O(1)- approximation of Assadi et al. [arXiv’17]. 
    more » « less